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ABSTRACT

There has been a growing interest in using théerdifitial quadrature method over the last 15 years
spreadsheet simulation modeling field of water modeling. This Current work provides an urgyesurface water
modeling using spreadsheet simulation (USMS) mdaie[(solving surface water problems where the wser edit the
upstream discharges of the river to get the digghat any point on the channel automatically. Tresent project is
proposing applying the differential quadrature roétton the simulating flow in one dimension prismaipen channel
through solving the diffusion wave models. Thegh#pecific accuracy and stability for solving PBEone of the main
reasons for choosing them. USMS is a practical atetind introduction to unsteady surface water ningehat uses
spreadsheets instead of conventional surface watdel codes. Unsteady flow, variable boundary aitthi conditions,
one dimension prismatic open channel, are evaluatéie USMS. Various flow management scenarioddcbe studied
by obtaining the surface water level of the différémes. In order to verify the DQM solution anetUSMS, flood data
found in published paper Bajracharya et al., 1986)sed as a benchmark case and the results of B@WMion is
compared with Crank Nickerson method and McCornsickemes which are the most two accurate impliadt explicit

Finite Difference schemes. DQM solution shows gageeement with benchmark case.
KEYWORDS: Differential Quadrature, SaintVenant equation, Sgsheets, Preissmann and McCormick Scheme
INTRODUCTION

Sallow water modeling is one of the most importapics in Engineering. Generally, the main issubydrology
and hydraulics is to understand the flood wave themd solve the governing equations accuratelyafgiven set of
parameters, boundary conditions and scenariosinfng accurate solutions for the governing equetiof flood wave
propagation plays an important role in the hydrglagd hydraulics area. Therefore this is an impdrsabject because of
its vast applications in different hydraulic pramke like flood forecasting,, design of spillways,teravays and dams.
Thus, there is wide variety of academics and piangrs have expressed about interest in solviegitby the numerical

models.

The mathematical representation of the unsteady fls governed by the hyperbolic fully non-linear
Saint-Venant equations. As they are highly nondinand there is no analytical solution in the &tare for these
equations. So the solution of these equations @wttained only numerically [2—4]. Due to the npeérity of the

governing equations and the numerical techniquesnaore commonly used as compared to analyticaltisohi[5]
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Lal, A.M, (2012) studied the limitations of DW basenodels when simulating kinematic flow conditiof&Tommaso
et al., (2012) studied the applicability of the Kadd (DW) approximations for the two types of dowesi boundary
conditions, critical-flow depth and zero-flow demgfadient for steady flow in prismatic channels,using a second-order
two-step Lax-Wendroff numerical scheme coupled witte characteristic method at the boundaries.[Q1(2
(Akbari G. and Firoozi B.) investigated two diffatenumerical methods, namely; Preissmann and Lffixsiie schemes
for numerical solution of Saint- Venant equatiohattgovern the propagation of flood wave, in ndtuseers, with the

objective of the better understanding of this pgaten process.

The finite difference techniques are commonly ugedolve the partial differential equations thrbugumerical
methods and for solving Saint-Venant Equationsolwave prediction is a very important aspect idrhylic concerns,
thus there is a need to find the numerical schetim&ishave higher stability, accuracy and convergeocsolve those
equations. The differential quadrature method (DQaMich is applied in this research is stable ans high level of
accuracy [1-12].

The differential quadrature method (DQM) was deped by Richard Bellman (Bellman et al., 1971) [8].
This method can solve equations in a different@inf of any system, including boundary/initial caiahs in the
equations. Richards (1992) uses DQM in some apjdita of fluid mechanics and the bending and twisbf beams [9].
In the recent studies, Fung (2001) has concenti@tetthe application of DQM in problems which mayfaeed in fluid
mechanics and heat transfer [10]. Hashemi, Abeatiai Malekzadeh (2006) used the differential quadeamethod to
solve full dynamic equations which is applied tmglating flow in a prismatic rectangular open chalnand regular
wetted bed [14]. Kaya (2010) has discovered theofisgQM on the solution of the Advection Diffusidquation [12,].
Kaya and Arisoy (2010) have applied that methosalving full dynamic equations in order to applydtsimulating flow
in a prismatic trapezoidal open channel and reguédted bed [13]. Meral[15] (2013) computed weigbtcoefficients by
using the Lagrange polynomials by which the sotutid the differential quadrature of heat- and maassfer equations
has been found. The solution showed the applitalnfiDQM space- RungeKutta method time procedarete one- and
two-dimensional domain. Jiwari[16] (2013) propos@dsolution of Burgers’ equation based on the weighaverage
differential quadrature method and the Lagranggmmhials which are used as the test functions topede weighting

coefficients.

The computer technology development ease soltirgshallow water flow equations. Spreadsheet isvapé
and it used for solving the PDEs which is one af tHest and available tools. The Spreadsheet hae soportant
Capabilities for instance, fast calculating, nurc@riand visual feedback. In addition to input andpat through the
Spreadsheet that can be plotted at the same watkshad its graphical interface is easing the ustding of data and
results. One of the important advantage of spresdsis that Spreadsheets are easy to program. Aagges in the

solution domain will be appeared in the solutiorrkepace due to Spreadsheets graphical representatiability.

During the last 15 years, spreadsheets are usedhas in the solution of many different fields efgineering
problems such as in solution of PDEs [20]. One-disienal transient heat-conduction problems [241 &ee-surface
seepage problems [19].Using of spreadsheet inrteering problems that have been growth recefitigre are many
published papers in the literature [17—-24] for eegring applications, and some applications of exfskeet in water
resource engineering fields. HalilKarahan [19] bascentrated on the application of spreadsheetonrgiwater problems

which may be faced and showed that spreadsheesefulutool in this field. HalilKarahan [19] proveithat excel

Impact Factor (JCC): 2.6676 Index Copernicus Value (ICV): 3.0
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spreadsheets introduce an easy approach for mgdalin understanding groundwater problems insteadisoig
conventional groundwater model codes. He solveddinmensional transient unsteady-state groundwateblems for

homogeneous aquifer parameters with constant sinésource terms.

Solving the saint vent equation which includesetidimension with higher grid points is difficulth&refore, there
is a need for using more efficient and simpler cotaponal tools for solving the surface modelingstsyn in the
unsteady-state case. In surface water modelingpmradsheet, there is no need to write an equatide i each cell to
solve equations. Spreadsheet has features of aupypaste, DQM equation can be copied to the nex¢ tStep cells
without writing the equations to each cells. Cadtigins are started iteratively and simntnousllyeotie equation pasted to

the next time step cells of the solution domainclihinay cause decreasing the computational time.

The main goal of this study is to deliver flexildballow water modeling simulation algorithm usthg DQM.

Therefore, an unsteady surface water modeling usingadsheet simulation (USMS) model has been mexke
DESCRIPTION OF THE DIFFERENTIAL QUADRATURE METHOD

The differential quadrature method (DQM) is a nuos scheme for solving the partial differentigjuations.
The Differential Quadrature Method (DQM) was deyeld by Richard Bellman (Bellman et al., 1971) [Rin3the 1971
and, since then, the technique has been useddmdirthe solutions of many problems in applied antnces [1-4].
This method can solve the equations in a diffea¢ritirm of any system, including boundary/initianglitions in the

equations.

The idea of a differential quadrature method iseldlaon the derivation of a function with respecttspace or
time variable at any point along a mesh line whschpproximated as a weighted linear summatioheftinctional values

at all others sampling points in the mesh of tlzatable.

For showing the mathematical representation ofX@&, we consider one dimensional domain varidlflg in a

domain specified by a % < x <xy =b seefigure 1.

IS TR Iy =D

4

Figure 1: One Dimensional Field Variablef (x)

Assumefi = f (xi) are the function values specified in a distribudetlofN sampling points;i =1,2,......N of the

domain in which the end pointsandxyare in

FOC) =) = 38 AD p(i =12, N) 1)(

dx" ij

whereAg.)are the weighting coefficients of thét™ -order derivative of the function with respect doyisy; .

The equation above is the Differential QuadraMethod rule for solving any derivative.

The advantage of this method depending on thafiiee review which are:
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e ltisrapid, convergent and accurate method.
e Solution results can be gotten by using less guidtp in space and time domain.
» lIts stability is not sensitive to time step likeu®ant number(Cr)
»  Solution results can be obtained smoothly and ately
The only disadvantage is that the results aretbento grid distribution in time and space domain
Mathematical and Application of Differential Model

The governing differential equation for this rassacan be expressed as following:

'

20| (20 _ p 0

it Co =D 0<x<LO<t<T 2
equation is gainedvén & Tsai,2001).)

By applying the rule of Quadrature Method in Eqtte linearized St. Venant equations can be digeektin
terms of differential quadrature as:

YR 1 ArsQir + [CEV1 B — D XY B;;®)Qjs=0i=12...N;s=12,....,R (3)

Eqg. 3 is called the differential quadrature (DQ)ered, ;and B; jare matrix represent the weighting coefficients
of each points on the time and space domain raspbgtand N is the number of grid points in theokhtime domain,
R is the number of grid points in the whole spagmadin in(x direction ). It should be noted that Wixeighting coefficients
A, s andB; ; is the 1st order derivative with respect to xattepoint on the grid and are different at diffédecations of
xi and ts and their calculation depends on sanpdeiag between the grids (the location).The distidn is used usually
for determine the location of each point in the domThe key procedure in DQ approximation is te tiee proper grid
points distribution and then determine the weightooefficientsA, ;so, this research shows the determination of the
weighting coefficients in detail and (USMS) is uged programming the problems and they will be ukedachieving the

stable solution. The boundary conditions at thiéaihand boundary conditions are given by:
Qux=Fly, 0<x<Landqgn=F2(), 0<t<T
F1., andF2 4, are function of time and space respectively.
After involving the initial and boundary conditiam Eq 3 then will yield:
YR A Qi+ [CXN2B — D X, Bj,i(Z)]Qj,s = A15Qi1 + [CBy; — DpBy;P]Qysi=2.N;s =23,R (4)
The procedure of Applying DQM as following

* Form the network domain by Discretize the spaceainrim x axis and time in y axis and using Gausbdttn-

Chebyshev sampling points distribution which isoraeended for numerical stability.

* Approximate the derivatives in a differential eqoat(saint venat equation Eq.2) by using the equafil).

By substituting the equation (1) into the governémgiations.
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e Apply DQM on each unknown point in the domain, s® dvas one equation for each point, for each unknow
The derivative of any function with respect to aspor time variable at any point on the domantetgrmined as

a weighted linear sum of the functional valuesllatthers discrete points in the domain of thatafale.
» Form a system of linear equations.

* Matrices must be formed from a system of linearagigns which can be solved by using of Gauss ehtion or

other methods.
e Solving the system of linear equation yields thsire unknowns.
Weighting Coefficients

Weighting coefficients is the key factor of solgiPDE by using the differential quadrature methedery grid
points in the domain effect each other by weighiclvican be calculated by using the different typégolynomial
interpolation. The accuracy of the differential deeture method that depends on the accuracy ofi¢ighting coefficient

which is associated with the order of the derivatif the PDE terms and grid points distribution.

Quan and Chang [25] have developed an explicinfibae of the Lagrangian- interpolation-function4xson
weighting coefficients for the higher derivativekiah is the reason of not using them in this redeaBelmans approach
presents approximation for first order derivativedaas the PDE under study includes second ordevatiee term,

this approach is not good chosen.

For first or higher order derivatives, Shu [28bposed a general relationship by considering theftaction in
the Lagrangian interpolation process. This explfoitmulae is that highly accurate weighting coeéfits could be
obtained for any number of the distributed grid ghing points. Villadsen, Michelsen[29],Quan and 64415] presented
the weighting coefficients of r (th) -order derivas of the Lagrangian interpolation test functioAscording to the
literature {[25], [26], [27], [28] [29], } there im0 effect of using different types of weightingetficients on the accuracy
of the solutions, but the accuracy of weighting fioents depends on grid points distributions amdier of the

derivatives.

The differential quadrature weighted coefficieots be solved by using several techniques likenigells first
approach, Shu's general and Quan Chang's approatle ipresent study, Shu's general approach whiehriumerical
discretization technique that delivers logical amcturate numerical solutions. Shu's general apprasicbased on

(Legendre polynomials) then the weight coefficierdtrix can be written in general as (Shu et al 4200

AT =L L) = 1,2, ... N) (5)
Where,
L) =—29; p(x) = [Ih=y(x —x,) (0,j = 1,2, .. .. N) (6)

(e=xj) (D(l)(xj)

By substituting 6 in 5 yields;

1 d1(x;) W) (x .. ..
A =T = ey 0 = Mhiear =) (1) = 12, N £ # ) )

In this work, the weight coefficient matrix can wetten as (Shu et al. 2004):
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=—Y =1 (x —x
Bl.,k - Lk(xi—xk)’Ll szl(x] xl) 8a
— N .
Lk = ]_[jzl(x]- - xk) ik 8aa
Bi,i = _2113:1 Bi,k l * k 8b
2 _ ( _ _Bik
B = 2| BB, xi_Xk] 9a
2 _ N @ ;
Bl,I. - _Zk=1 Bl,k l ¢ k gb
A matrix of time domain can be written like B matin space domain as
- R
Li = Hj:l(tj —t;) 10
A =—3—i#k 11
’ Li(ti—tg)
Ai,i = _Z§=1Ai,k l * k 12
Note that the Legendre interpolation shape funsti¢ (x)havethe following properties.
[j)=21ifi=]j 13
And then Eqg. 4 has been applied in the formuladibthe matrix, as shown below.
AZ,S AZA AZ,::R Q[:Z,T:Z QZ,S QZA QZ,T:R
A?,a AC.%A Az,lszn ]* Q?,z Q?,a Q?A QQ,T—R:|
dns Ane o Arnoal | Qva Qiws Qows < Qewren
BJ:Z,[:Z 32,3 32,4 BZ,I:N E):ZJ:Z(Z) BZ,S(Z) BZA(Z) Qj:l,s:l 02,3 QZ,G QZ,S:R
e l B?,z Ela,z B?,d— 53{:)\' } D, * 53‘2(2) Qla,z Q?,a Q?,a Qa,:::ﬂ
Bva Bua Bus - Biwiw Bns® Bes® Ba® Qwz Ova Owa — Qyes
QI:Z,l
Qs1
= —[Ar=15=2 A1z Ara - Augl*| Qua *([f*[szmzz]*Dh*[%cg,;:z]}*[Qx=1,s=z Quz Qs - Gus=r] 9
Qjona 14
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WhereQ;, andQ;; areN and R unknown function values. The previous matricesolsexd for theQ;, andQ;

which are unknown values. Approximate derivativethie differential equation by thelkeunknown function values. Note

that the boundary and initial conditions have beenstructed in the form of the Weighting coeffidiematrix as shown

inthe right hand side above. After taking the neasi of unknown values Q;,, and Q; as a common factor for the

equation above yields:

Qi j=2rs=2 Qzs Qs Qarands=r
Qs Qs Ga G|,
Biopia Baz Bas - Bawmy Biaum2® Bon® By
cu| Baz Bss Bas - Baew | Bo®  By@ B,,@ -
Bj=nz Bwz Bwa v Bmwe=w Bf:_r\,;z@ Bra® Bgs®

(Bimsime] = Dn+ B o]} < @1z Qus Qus

AZ,S:R
Aasme |,

- Ar-rs=r

Qi1

—[Ar=ts=2 Arz Asa o Argle| Qua _{[’3"

Qj=w,z

15

The boundary condition in Eq. (4) can be writterthe matrix form as:
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Qi=21
Q3,1.
—[Ar=15=2 A1z A1a - Airl*| Qa1

Qj=n1 16
The initial condition in Eq. (4) can be writtentime matrix form as:

—{[c “ [Bi—yi=2] = Dn* [B}(j;:z]} #[Qi=1,s=2 Q13 Q14 " Qis=r] 17

Note that the initial and boundary conditions haeen applied in the formulation of the matrixes.
SAMPLING POINT'S SELECTION

In case of using the Differential Quadrature, egpral intervals sampling points gives more accuracythe
solutions there for, Shu is recommend unequallypsiauign points like Chebyshev-Gauss-Lobatto grid moifshu, 2000).
For a domain specified by < x <ry and with using Gauss-Lobatto-Chebyshev samplinigtpdnon-uniform grid),

then the coordinate of any point (i) can be deteeatiby:

i—1
r; = 0.5(1 — cos - T)
N—-1 18
The location of each grid point on the space darman be determined as following:
Ti—T
X; =
Tw— T 19
In time domain as following:
Ti— T
t; =
g —T 02

MODEL DEVELOPMENT

The flowchart of the DQM solution for the (USMS)high uses DQM, can be seen in figure 2. The straabd
the program consists of two main separate excelsisheet files, one for calculating the weightiagfficient matrices in
space domain and the other for calculating the kg coefficient matrices in time domain. The tfiles are easily

connected by using the excel capabilities and bbthem have the same general structure, see fRyure
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St

-Definition of the channsl length and tims of simulation.
-Number of grid in the mpace domszinns | i=1
- Number of grid in the tims domainnt | =1
-Bovndsry condition Q1.8 for =121 .. R
Initial condition QT.1. for =12 .. N
Inpust 1tl xis

Domain distribution
ris =05{ 1-cos{nf{is 1y'ns-1)]}
rit =0 5(1-cos{x[{it-1}'nt-1)] }

. tidtir-trl}| smulation time-rtl}
Me={sis-xrl) fchanne |l ngth- wrl}

| After caloulating the grid point locations,

i s+l
itmit+1

the progrem sranges the value of eachxi znd t in horizonel and werticsl cellz a2z
tobe pead inthe nexnt step calculations |

| After grid points formulation, Calculate T2= Hy  (7%- ) fxi=x putthecell=1  seecell from |
caloulate T — if wi=aj purt the cell = El;_ : seecell from
! LR

Throueh applving of DOM, (USME) Geeme weirhting coefficient matrices in
time and space domaing by Subetitstine the aquation (1) into the poveming
aquations st each grid points )

i

3. Sterting to foom 2 system of lnesr eguations .
d. Solving the system of the linesr aqustion in onder to gt the desired unknowns. We obtsin @mulEneons
aquations which canbe solved by using the Gauss elimination or other methods.

RESULT

END

Figure 2: The (USMS) Flowchart
The structure is consisting of three matricesheafcthem consists of the same number of the couamd the
rows which are equals the number of grid pointhéndesired domain wither space or time domain.fireerow from up

and the first column from left are representing $pace or time domain and the space domain caererated by using
equation (18) and its code statement is:

AZ64 =$AA$6+ (1-COS ((AZ63-1)/ ($Z$6-1)*3.14))/2AB$6

The function of the first matrix is to calculatguation 8aa in space domain and the equation Beirtime
domain and the program statement is:

=IF (BB12=BB13; AZ12=1; $BB$13-BB12)
The statement of the last row is:

=PRODUCT (AY12:AY61)
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BC BB BA AZ AY AX | AW | AV | AU | AT | AS AR AQ AP | AD
1 2 3 4 5 5 7 8 9 10 11 12 13]10

nodd  x= time 0 1026263 |41.008377 ] 92.11 | 163 36 | 254 47 [365.05 | 494 7 | 642 6 | 808 76 | 991.96 | 1191.6 | 1407 | 11
1 0 11/ 10 262626]| 41.008377| 92 11| 163 36| 254 47 | 365 05| 494 7 | 642 6 | 608 76 | 991.96 | 1191.6 | 1407 |12
2 [ 10262626 | 10 26263 1|30 745751 B81856] 163 1] 244 2 |364 79| 4844 | 632 5 | 798 5 | 981 697 | 1181 3 [ 1397 | 13
3 | 41008377 | 41.00838| -30 74575 1| 51| 122 35(213 46 [324 04 | 453 7 | 601 8 | 767 75 | 950 952 | 1150 6 | 1366 | 14
4 [ 82111040 | -92 11104| -51 84841| -51 10266 1| 7125[162 35272 94| 4026 | 5507 | 716 65 | 899 849 | 10995 | 1315 | 15
5 | 163 360834 | 163 3608| 153 0982 122 3526| 71 25 1|91 104|201 69| 3313 | 4794 | 6454 |898 599| 1028 3 | 1244 | 16
6 | 254465277 |-254.4653| -244.2027| -213.4569| -1624| -911| 1 [11059| 2402|3883 | 554.3 |737.495)| 93715 | 1152017
7 | 365050381 |-3650504| -354 7878 -324 042| -272.9| -201.7| 1106 | 1 1206 | 277.7 | 44371 | 626.91 | 826 56 | 1042 fA8
8 | 494 662187 | 494 6622| 484 3996| 463 6538 402 6| 3313 2402 | 1296| 1 | 1481 | 3141 |497 298| 696 95 [912 2 |19
9 | 642 768632 |-542 7686| -632 506| -601.7603| -550.7| -4794|-388.3 | 277.7|-1481| 1 |165.99 | 349 191 5468 84 |764 1 | 20
10 | 808 761733 | 808 7617] 798 4991 767 7534] 716 7] 645 4] 65543 | 4437 | 314 1] 166 1 183 198 | 382 85 [598 1 | 21
11 | 991960079 | -991.9601| -081 6975] -950 9517| 899 6| -828 6] 7375 | 6260 | 497 3|-349 2| 183 2 1 199 65 [414 9] 22
12 [[1191 611632 | 1191 612| 1181 349] 1150 603| 1100] 1028 937 1 | 826 6 | 696 9| 548 8 | 382 85| 199 65 1 [2153]23
13 | 1406 896811 | 1406.897| 1396.634| 1365 888] 1315] #Mal 1152 | 1042 | 912 2| 7641|695 14| 41494 | 215 20] 1 |24
[ 6E+168] JE+168] -JE+168] JE+168] -JE+168] 2 991E+166]-2 99E+168] JE+160] -IE+166] IE+168] I +160)

Figure 3: Structure of the First Matrix

The function of the second matrices (figure 3)tdscalculate the weighting coefficient of each gpdints

depending on the equation (8a) and (11) in spadehentime domain respectively and its code statéme

=IF (AZ64=BC65; AZ65=AZ224; (PRODUCT (BA12:BA61)JRDDUCT(AZ12:AZ61))/($BAS$64-AZ64)).

BC

BB BA AZ

0 10.2626

41.0084

AX

92111

AW

163.361 254 465

AV

AU

365.05

AT

494 66

AS

64277

AR

808.762

AQ

991.9601

AP

1191.6116

AQ

1406.697

1636.9319

AN

AM

188077

-0.16026 0.19488

-0.04877

002171

-0.01224

000785

-0.0055

0.004

-0.0031

0.00247

-0.00201

00016731

-0.001416 00012164

-0.0011

-0.04872( 002434

003252

-0.0122

0.00653

-0.0041

0.0028

-0.0021

0.0016

-0.00125

0.001016

-0.000844

0.000713

-0.000612

0.00053

0.01219| -0.03253

00060

001957

-0.00817

000468

-0.0031

0.0022

-0.0017

0.0013

-0.00105

0.0008665

-0.000729| 0.0006239

-0.0005

-0.00543 001222

-0.01957

000269

001403

-0.0062

0.0037

-0.0025

0.0018

-0.00139

0.001109

-0.000907

0.000758

-0.000645

0.00056

0.00306| -0.00653

0.00818

-0.014

0.00151

001097

-0.005

0.003

-0.0021

0.00155

-0.0012

0.0009699

-0.000801| 0.0006759

-0.0006

-0.00197( 0.0041

-0.00469

0.00616

-0.01098

000096

0.009

-0.0042

0.0026

-0.0018

0.001353

-0.001064

0.000865

-0.000721

0.00061

0.00137| -0.00282

0.00309

-0.0037

000436

-0.009

0.0007

0.0077

-0.0036

0.00225

-0.00159

0.0012071

-0.000957| 00007835

-0.0007

-0.00101| 0.00207

-0.00221

0.00249

-0.00302

0.00417]

-0.0077

0.0005

0.0067

-0.00318

0.002008

-0.001432

0.001093

-0.000873

0.00072

0.00078) -0.00158

0.00166

-0.0018

0.00209

-0.0026

0.0036

-0.0068

0.0004

0.00602

-0.00286

0.0018193

-0.001306| 0.0010031

-0.0008

-0.00062| 0.00125

-0.00131
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Figure 4: Structure of the Second Matrix

The function of the last matrix (figure 4) is taleculate equation 8b and 12 which is used if xijand ti= tj in

space and time domain respectively and its coderstnt:

AY174=IF (AY173=BB174; AY174=0;1/(AY$173-$BB174))

BC BB BA A7 AY AX AW AV Al AT AS AR AQ AP AD AN
172
x 0| 10.263| 41.0084 92 111| 163.361| 254 465| 365.05| 494.7| 642.8|808.762| 992| 1191.6] 1407|1636.9319 173
1 0 0] 0.0974] 0.02433( 0.01086( 0.00612| 0.00393| 0.00274| 0.002{ 0.002|0.00124| 0.001| 0.0008| 7E-04/ 0.0006109 174
2 | 10.2626 | -0.097 0] 0.03252| 0.01222] 0.00653| 0.00409| 0.00282| 0.002| 0.002)0.00125| 0.001] 0.0008| 7E-04] 0.0006148 175
3 [41.0084 | -0.024| -0.0325 0] 0.01957| 0.00817) 0.00468 0.00308| 0.002| 0.002| 0.0013| 0.001) 0.0008| 7E-04| 0.0006266 176
4 | 92111 | -0.011) -0.0122| -0.0196 0] 0.01404| 0.00616| 0.00366| 0.002| 0.002| 0.0014| 0.001) 0.0009| BE-04| 0.0006473 177
5 [163.361 | -0.006| -0.0065] -0.0082( -0.01404 0] 0.01098| 0.00496| 0.003| 0.002|0.00155( 0.001| 0.001| 8E-04] 0.0006786 178
6 [ 2564 465 | -0.004( -0.0041) -0.0047| -0.00616] -0.011 0] 0.00904] 0.004] 0.003] 0.0018| 0.001] 0.0011] 9E-04| 0.0007233 179
7 [ 36505 | -0.003] -0.0028] -0.0031] -0.00366] -0.005( -0.00904 0] 0.008] 0.004]0.00225| 0.002| 0.0012) 1E-03| 0.0007862 18?
8 [484 662 | -0.002{ -0.0021) -0.0022| -0.00248| -0.003{ -0.00416] -0.00772 0] 0.007({0.00318) 0.002] 0.0014] 0.001) 0.0008755 181
9 [642769 | -0.002( -0.0016) -0.0017| -0.00182| -0.0021{ -0.00258]| -0.0036| -0.007 0] 0.00602| 0.003] 0.0018] 0.001]0.001005% 152
10 | 808.762 | -0.001) -0.0013| -0.0013| -0.0014| -0.0015] -0.0018(-0.00225| -0.003| -0.006 0] 0.005| 0.0026] 0.002]0.0012075 183
11 99196 [ -0.001] -0.001{ -0.0011] -0.00111] -0.0012| -0.00136] -0.0016( -0.002| -0.003] -0.0055 0| 0005 0.002({0.0015505 184
12 | 1191.61 | -8E-04| -0.0008] -0.0009| -0.00091] -0.001] -0.00107{ -0.00121| -0.001| -0.002{ -0.0026| -0.005 0] 0.005]0.0022456 185
13 | 1406.9 | -TE-04| -0.0007| -0.0007| -0.00076| -0.0008| -0.00087| -0.09096| -0.001| -0.001| -0.0017) -0.002) -0.005 0] 0.0043472 186
14 | 1636.93 | -6E-04| -0.0006]| -0.0006| -0.00065] -0.0007| -0.00072| -0 gUN79] -9E-04| -0.001] -0.0012| -0.002| -0.002| -0.004 0 187

»»3 -0.16]_0.0243] 0.00607] 000269 0.00151] 0.00096] 0 000661 5E-04] 4E-04] 0 00028 2E-04] 0.0002] 2E-04] 0 0001258] 0.00011] 224

Figure 5: Structure of the Third Matrix

Finally, the matrices equation 14 and 15 can lem thrranged by substituting the all previous mesrimto

equation 4 and by then Matlab program (figure 6) lsa used in order to be solved by using the Gelirsénation or the
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other methods. All previoustatements can be easily pd to each cell inside the spreadsheet as much aare required
depending on the number gfid points in bottdomains in order to produce aflatrices. The size of each matrices eq
the size of the mesh domain. The peog substituts automatically the space and time weighting coefficiel figure 3,

figure 4 into equation 15.

Shallow water modeling igsing spreadsheet simulation (USMS) : to createthe space anthe time weighting
coefficient matrices for each time interval autoicalty (based on equatit 4) after inputthe channel length and time
simulationin Matlab interface see figure. Initial and boundary condition could be entergdusing aMatlab interface
figure 8 and figure Yespectively. Th (USMS) creates equation based on DQM at each point orgtigedomait,
and from them, (USMS) form space . time weighting coefficient matrices see figuBest, £ the (USMS) allow users to
use theprogram more than one time by asking him if he 's to continue or nagee figure 1. The main interface of the

program can be shown in figurEhe output is lustrated in excel fsheet.

‘L, Run', "Exit'):

I
-4
v

n wave celerity a:','The channel sta

E e e o s Chmies] BSogile =

The savulalion siart el 10
e T msrvasin i Doves D

Entor the no. of grid pomnis on space domain ns

= “..lnﬂjll—':“

-
-

Entes (e Ao of grid paoeits o feres oo e

EANSF e Ralal Canabions
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- =4 Camenl

Ervawee e Fyedeogr et al dimbnoces ot

L= 2 Tl

Figure 7: Program Interface Figure &ntering Initial Condition Interface
APPLICATION TO THE NUMERICAL EXAMPLE
In order to test the (USMS) model ¢ the DQ method,hie numerical example is adapted from published i

(K. Bajracharya, D.A. Barryl997) in whicl upstream boundary condition is estimatedgg;, = texp (— ﬁ)
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The initial condition was assumed @g;o,= 0. As well as the values of the celerity, c, thusion coefficient
and D were taken as 1 m /s and 100 m2/ s, respdctiSo the length of channel under study is 500énohthe simulation

time is 10000 second.

THE RESULTS AND DISCUSSIONS
Stability Analysis of DQM Solution

The numerical stability is a result of the accyraof the numerical algorithm. The numerical error
(erroneous initial conditions, local truncation mund-off errors) and its propagation affect thaneucal stability.
The numerical solution is said to be unstableridesr were clearly observed at some parts in theutations. So any small
change in the input data or the method parametess produce correspondingly big changes in the firallts and at
which the solution considered unstable. Therefbee mhethod is considered stable if small changenfuti data causes
small or the same change in magnitude in outputiteesSo the numerical stability, means that theerical solution has
to be chosen to the benchmark case solution thraligiiages of calculations. In the present projiaet different changes
in input items of the method have been done toodiscwhich parameter has big effect on the accusddyQM solution

and then the numerical stability.

The accuracy and stability of the results arecaéie by two factors, one of them is grid point ilsttion types
and the other is test functions types (Bert andik/dl996) and the affection is presented in thiseegch. Basically in
Figure 9 shows the effect of grid point distributitypes on the accuracy of the solution which ti@vDsolution shows
good agreement with benchmark case with using Glanisatto-Chebyshev sampling point's distributiong) and poor
agreement with using others. Figure 9 also showseffect of the test functions types on the acguiacthe solution
which the DQM Solution shows good agreement withdhenark case with using polynomials and poor agesgrwith

using others.

e TP Il distribout

A crank Micklson | benchmark case

h D HEr

Dari{polynomial-uniform)

amifs
1M
¥

i3]
;]

B
B
B

-s0

Time in secands

Figure 9: Effect of Grid Distribution and Test Functions on the Solution, Discharge at x=490 m

Figure 9 shows the stability of DQM solution at&l smoothness against the benchmark case soliti@nerror
which is the difference between the DQM solutidowfrate) and the benchmark case solution (flow)rdatcan be seen in
table 1. The DQM has high errors at the peak flate and get smaller after the peak as it is shoviigiire 10. The error

is almost zero until the peak flow rate is reached it increased at the peak and after the pealentor back to near zero
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through the last stage of the solution as it isnshin figure 12. The error is calculated by themal error equation as

benchmark

/
]1 n’ — g

follows: |le|l, = [Zile]’] ", e = ¢7 , n = number of observations.

Where n is the number of observations. The noenar of are 1.3084 and 1.259489 for MacCormack @d

methods, respectively.

Table 1: Accuracy of Mac Cormack Scheme Solution ahDQM Solution at Distance 490m

Crank Mac Cormack Scheme DQM Solution

] R Normal Error =1.3084 Normal Error = 1.259489
S ;[mﬂ Absolnte Ervor(e;) RE:‘::‘:’ Absolute Error (¢;) | Relative Error
0 167 2721 16.2934131 0982424182 -0.588277953
1026 | 9.1354 243054 266057315 0.011352482 0.001242691
31.00 395 129 130395136 1514213589 0.046024729
9211 | 78.001 0316 0.00205123 1579630081 20.020251408
1633 | 127.879 0421 20.0032921 0344591808 0.002694671
2544 | 18324 0.14 0.00076402 0706604773 20.003856171
365.0 | 23242 039 0.00167799 1.048597659 0.00451165
3946 | 27658 012 ~0.0004338 0.051039039 T0.000184536
6427 | 306.74 0262 0.00085414 1.632596437 0.005322411
8087 | 3318 024 20.0007233 3540763223 T0.013685242
99196 | 34732 028 20.0008061 1448871129 20.041715741
1191 | 341.75 035 20.0007315 15.46296368 20.045246419
14068 | 325384 02 ~0.0006137 1638755436 20.050293257
16369 | 2920 0.108 ~0.0003687 7765151154 0.026511271
1880.7 | 264874 0326 20.0012307 8555858624 20.032301617

‘1"’-?:_,
wlf
i

Figure 10: Solution of Real Life Case Using DQM fothe Diffusion Wave,
Discharge Hydrograph for the Numerical Example at x490
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Figure 11: Numerical Relative Errors of the DQM
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Figure 12: Numerical Absolute Errors of the DQM

Convergence Analysis of the Solution

The numerical scheme is considered as a conveifgiet different is between its solution and th@aa solution

approach goes to zero. In the DQM solution, in ptdereach the good convergence, it must be seekufificient grid

points in both the space domain and the time donhaithe current example, the sufficient grid psiit x direction is 5

and in t direction is 50 as it is seen in figure 18. The convergence of the DQM solution increag#s increasing the

number of grid points in t direction only as candsen in figure 13. As it is shown in figure 14enh is no effect of

increasing the number of grid points in x direct@mmaccuracy and stability of the solution.
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CONCLUSIONS

In the present work, the DQM is used to solveuhsteady state one-dimensional diffusion wave mbgalsing
spreadsheet with friendly interface. This methodcuitizes the partial differential equations intset of algebraic
equations which can be solved by using Gauss ditioim or other methods. The current work presdd&\MS) model to
solve shallow water-modeling problems. The excel Muatlab is integrated to produce the model resditee model
results is tested with a real life example and dhfferent schemes and its results shows good gatefur solving
Diffusion wave model by using DQ method. Subroutiaed macros are not used in (USMS) model. Inptat lidee initial

and boundary conditions can be written in usenftig windows which is constructed on Matlab program

The current method is applied on one example heddsults are compared with their benchmark calsgicns
and the other methods. The results show good agmtewith benchmark case. And through applying tf@M) the
normal and relative errors resulted from DQM byngs{USMS) model is less than the other methodsmRite results
above, the finite difference schemes results shoar pgreement with the exact results at the beggnoi simulation
whereas DQM solution get away from benchmark cabeisn at the peak flow rate values. Moreover, gb&ential of the

DQ method for solving Diffusion wave model was prdvn stability and accuracy.
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